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Abstract. The intensive use of immersed granular flows has motivated a large amount of work in this field of

research. We present here a new numerical model to represent accurately and efficiently mixtures of fluid with

grains. On one hand, the motion of the grains is solved at the grain scale by a contact dynamics method that

consider grains as discrete elements. On the other hand, the fluid flow is computed from a continuous model

of the mixture at a greater scale. The link between the two scales is provided by an interaction force based on

the Darcy’s law for porous media and used as a closure relation in the equations of the model. Some results of

simulations in a two dimensional space are provided to prove the efficiency of the implementation.

1 Introduction

A lot of numerical methods have been developed to under-

stand and predict immersed granular flows i.e. mixture of

grains in suspension within a fluid [1]. We can separate the

different types of physical models for immersed granular

flows with respect to the scale at which the flow is modeled

[2]. At large scale, the grains are introduced in the fluid

in an implicit way. On one hand, some models consider

the medium as a mixture described as a non newtonian

fluid [3]. On the other hand, the grains can be introduced

via a dissipative force of friction [4]. This force is used

as a closure relation in the momentum equations and de-

pends largely on the considered problem [5]. At a smaller

scale, direct methods consider the two phases distinctly.

The dynamics of the fluid is solved in an Eulerian way

while the motion of the grains is solved in a Lagrangian

way. This can be numerically done by remeshing the fluid

phase at each time step [6]. Other approaches use methods

of penalty or Lagrange multipliers to avoid the numerical

cost imposed by the successive creations of a mesh [7].

Finally, a Lattice-Boltzmann approach can be used to sim-

ulate immersed granular flows without a mesh [8].

Discrete elements methods (DEM) are commonly used

to describe trajectories of grains in a Lagrangian way for

dry granular flows [9]. Specific models are able to solve

grain-grain and grain-boundary collisions. We can distin-

guish several types of DEM. Collision methods solve con-

tacts sequentially. They are not applicable to dense gran-

ular media where the time between two collisions is very

short. Other methods solve all the contacts that happened
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during a given time step. They are based on two models

of grains that change the representation of the contacts.

The smooth grain model allows a slight deformation or

an interpenetration of the grains. The elastic, plastic and

friction forces between the grains are deduced from these

deformations/interpenetrations. On the contrary, the nons-
mooth grain model totally bans such deformations. An im-

plicit resolution of the movement equations of the grains

and the contact forces is needed for this method.

In this paper, we present an hybrid method [10] that

can be viewed as a compromise between direct methods

and methods based on continuum mechanics. The motion

and contacts of grains are solved using a DEM at the grain

scale while the fluid flow is obtained from a continuous

description of the mixture at a greater scale using finite el-

ements method. It is then possible to solve problem faster

while describing accurately the physics of grains.

2 Model

Our model is based on a well-known hypothesis of the

continuum mechanics: the separation of scales. The fluid

flow characteristics are deduced from a continuous model

of the mixture at a larger scale than the grains. The incom-

pressible Navier-Stokes equations are averaged on ele-

mentary subsets of the domain. These elementary subsets

are the sum of a fluid volume Ω f and a solid volume Ωp.

The size of the grains have to be negligible in comparison

with the size of the subsets.

Let us define the porosity that corresponds to the vol-

ume fraction of the fluid in an elementary subset:

φ =
Ω f

Ω
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The averaged Navier-Stokes equations on an elemen-

tary subset are:

1

Ω

∫
Ω f

(
∂ρ

∂t
+ ∇ · ρu

)
dΩ = 0

1

Ω

∫
Ω f

(
∂ρu

∂t
+ ∇ · (ρuu) − ∇ · σ + ρg

)
dΩ = 0

where ρ is the density of the fluid, σ is the Cauchy tensor,

u is the velocity and g is the gravity. The intrinsic fluid

volume average of the velocity on an elementary subset is

defined by:

〈u〉 f =
1

Ω f

∫
Ω f

u dΩ

The velocity is then splitted in this average and a perturba-

tion with zero mean value:

u = 〈u〉 f + u
′

The intrinsic solid volume average operator can defined

in a similar way. Then, using some average theorems

[11, 12], we derive the average form of the Navier-Stokes

equations:

0 = ∇ ·
[
φ 〈u〉 f + (1 − φ) 〈u〉p

]

0 = ρ
∂
(
φ 〈u〉 f

)
∂t

+ ρ∇ ·
(
φ 〈u〉 f 〈u〉 f

)
+ φ∇ 〈p〉 f − φρg

− μ∇2
(
φ 〈u〉 f

)
+ μ
∇

(
φ 〈u〉 f

)
· ∇φ

φ
− μ 〈u〉 f

∇φ · ∇φ
φ

−∇ ·
(
μ

Ω

∫
s

nu ds − ρφ 〈u′u′〉 f

)
− 1

Ω

∫
s

(
μn · ∇u′ − np′

)
ds

︸�������������������������������������������������������������������������︷︷�������������������������������������������������������������������������︸
F

where μ is the dynamic viscosity, n is the outward normal

to the interface s of the two phases.

Finally, this mathematical model is closed as we re-

place those last terms by a force F that integrates the inter-

actions of the fluid with all the grains in the representative

volume. The interaction force between a grain i and the

fluid can be written at the grain scale:

Fi = −Vpi∇ 〈p〉 f − Di + gVpi

ρpi − ρ
ρpi

where Di is the drag force, Vpi is the volume of the grain i
and ρpi is its density. In our implementation, if the mixture

is assumed to be composed of identical grains, we can use

the formula given by Di Felice and Rotondi [13]

Di = f (φ) Cd

(
Repi

) Apiρ

2

∣∣∣upi − 〈u〉 f

∣∣∣ (upi − 〈u〉 f

)
where Api is the projected area of the grain on a plane

perpendicular to the grain motion and Repi is the grain

Reynolds number:

Repi =
2rρφ
μ

∣∣∣upi − 〈u〉 f

∣∣∣

To take into account the effect of the neighbor grains, we

use a function f (φ) given by Wen and Yu [14]:

f (φ) = φ−1.8

while the drag coefficient Cd

(
Repi

)
is provided by

Dallavalle et al. [15]

Cd

(
Repi

)
=

⎛⎜⎜⎜⎜⎜⎝0.63 + 4.8

Re0.5pi

⎞⎟⎟⎟⎟⎟⎠
2

3 Results

Since the theoretical researches conducted by Brinkman

[17] in 1947 on the fluid flow in an immersed swarm of

grains, a lot of experiments have been realized to under-

stand the observed micro- and macroscopic behaviors. An

overview of these results can be found in [16, 18].

Just after being introduced in the fluid, the swarm falls

and some grains escape from the closed volume of the

swarm at the rear of the motion. They form a sort of tail

while the lower part of the swarm forms something like a

helmet giving to the whole grains the form of a mushroom.

Twenty years later, Nitsche and Batchelor [19] performed

numerical simulations to better understand this leakage of

grains. They characterized the trajectories of the grains in-

side the swarm by decomposing the dynamics in two types

of kinematics: a circular motion due to the toroidal ve-

locity field inside the swarm and a random motion due to

the hydrodynamical interactions. The leakage is then pro-

duced by the random motions that lead the grains outside

the swarm where the streamlines are not closed.

The grains in the tail slowly fall because they are no

longer dragged by the swarm [16]. The tail breaks away

from the hemispherical part. Then, the center of the swarm

is almost empty but the fluid can’t cross it because of the

overpressure in front of the motion. This overpressure

point change into a ring below the swarm that becomes

a torus and the fluid will then be able to cross it [18]. The

torus becomes unstable and divides into two new smaller

swarms that can repeat the same process if they are made

with enough grains.

Simulations in two dimensions are performed with our

model to compare the results with the simulations and ex-

periments of Machu et al. [16]. Figure 1 shows the re-

sults for glass beads falling in glycerin. We clearly see the

different steps corresponding to the experimental observa-

tions. Initially, we release a spherical swarm (circular in

2D) in the fluid. In figure 1a, the leakage of grains at the

rear of the motion leads to the formation of a reverse mush-

room. The tail we obtain in simulations is smaller than

the one shown by Machu et al. [16] but it could be ex-

plained by comparing the number of grains in our swarm.

In two dimensions, the number of grains is much less than

in three dimensions. The computed velocity field looks

like a cross-section of the toroidal field described by Met-

zger et al. [18]. The situation in Figure 1g shows the tail is

no longer attached to the swarm. The overpressure point

also divides in two part that can be again considered as a

cross section of the ring described above (see Figure 1i).
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Figure 1: Evolution of a swarm made up of glass beads falling in glycerin

Figure 2: Division of the swarm (comparison with the experiment of Machu et al. [16])
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Figure 3: Simulation of Machu et al. [16]

The division of the swarm in two new smaller swarms is

shown in Figure 2. Finally, it appears that the numerical

simulation provides a quite similar behaviour than the re-

sults of Figure 3.

4 Conclusion

We develop an hybrid multiscale model to compute im-

mersed granular flows. This model solves the contacts be-

tween grains with a DEM. We consider a non-smooth con-

tact dynamics method and inelastic collisions. The fluid is

solved at a greater scale by averaging the Navier-Stokes

equations on an elementary subset containing the mixture

of grains within the fluid. These averaged equations are

solved by a finite elements method. With this model, we

can compute a wide range of immersed granular flows

from pure fluids to porous media with a reasonable com-

putational time while the physics of the grains is described

accurately.

An interaction force between grains and the fluid link

the two scales of the model. This force is introduced in the

momentum equations to replace some perturbation and in-

teraction terms appeared during the averaging. This inter-

action force depends on the drag force that is determined

empirically. The Rotondi and Di Felice’s law neglects

some important characteristics of the mixture such as the

diversity of the grains encountered in real flows. More

complex formula can be used to incorporate those effects.

Those preliminary results are very promising and

demonstrate the qualities of the model. Firstly, we are

able to compute the forces and constraints applied on each

grain and their macroscopic motions can be compared

with some simulations and experiments found in litera-

ture. Secondly, we can represent the flow induced by the

displacements of the grains that can’t be obtained in real

experiments. And finally, we have shown that we could

obtain accurate results using a representation of the fluid at

a greater scale than the grains. Of course this is just a pre-
liminary test of our model and other simulations should be

achieved to show the real benefit of the contacts represen-

tation. The next step consists of generalize our approach

in three dimensions in order to obtain better quantitative

comparisons with experiments.
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