An unresolved FEM-DEM model
for granular suspension

M.Henry, F.Dubois, J.Lambrechts, V.Legat

www.migflow.be

Two families of suspension

    Coilloidal suspension : 1nm - 5$\mu$m
    Paints, Inks, ...
    Granular suspension : > 5$\mu$m
    Submarine avalanches, mudflow, ...

A brief history of granular rheology

Direct approaches to deal with two phases

    Body-fitted mesh
    Fluid-Structure interaction at the boundary
    Immersed boundary method
    Rigidity constraint at the solid position

Unresolved DEM-FEM model

  • Solid phase
     Discrete element
     Lagrangian representation
    Insight in contacts physics
  • Fluid phase
     Continuous medium
     Eulerian representation
    Computational convenience
  • Fluid-grains interaction
    Empirical momentum transfer

Non-smooth contact dynamics for dense regime

  • Newton's second law
  • \[ \frac{d (m_k \mathbf{u}_k)}{d t} = m_k\mathbf{g} - \mathbf{f}_k \]
  • Dynamics equation
  • \[ \mathbf{M}\Delta \mathbf{u} = \mathbf{p} \]
  • Local Frame
  • \[ \mathbf{U} = \mathbf{H}\mathbf{u} \hspace{5mm} \mathbf{P} = \mathbf{H} \mathbf{p} \]
  • Solve for $\mathbf{P}$
  • \[ \begin{pmatrix} \Delta U_n \\ \Delta U_t \end{pmatrix} = \underbrace{\begin{pmatrix} w_{nn} & 0 \\ 0 & w_{tt} \end{pmatrix}}_{ \mathbf{H}\mathbf{M}^{-1}\mathbf{H}^T} \begin{pmatrix} P_n \\ P_t \end{pmatrix} \]
  • Normal and tangential components
  • \[ \begin{aligned} P_n &= \frac{1}{w_{nn}}\text{max}(0, U_n - \frac{\delta}{\Delta t})\\ P_t &= \frac{1}{w_{tt}}\text{min}(|U_t|, \frac{w_{tt}}{w_{nn}}\mu |U_n|)\frac{U_t}{|U_t|} \end{aligned} \]
  • Update velocities
  • \[ \mathit{u} \rightarrow \mathit{u} + \mathbf{M}^{-1}\mathbf{H}^T \mathbf{P} \]

Parametrizations are required

  • Averaged Navier-Stokes equations, $\mathbf{u} = \epsilon \mathbf{v}$, $\mathbf{u}^s = \phi \mathbf{v}^s$
  • \[\begin{aligned} &\color{red}{\nabla \cdot \mathbf{u}^s} + \nabla \cdot \mathbf{u} = 0\\ &\rho \left[\frac{\partial \mathbf{u}}{\partial t} + \nabla \cdot \left(\frac{\mathbf{u}\mathbf{u}}{\color{red}{\epsilon}}\right)\right] = -\color{red}{\epsilon} \nabla p + \nabla \cdot (2\eta^*\color{red}{\epsilon}\mathbf{d}) - \color{red}{\mathbf{f}} + \color{red}{\epsilon} \rho \mathbf{g} \end{aligned} \]
  • Drag parametrization
  • \[ \mathbf{f} = g(\epsilon) C_d \pi r^2 \frac{\rho}{2} \left\lVert \mathbf{v^s} - \mathbf{v} \right\rVert \left( \mathbf{v}^s - \mathbf{v} \right) \]
  • Subgrid scale viscous model
  • \[ \eta^* = \eta\ \underbrace{(1+2.5\phi + 5\phi^2)}_{\text{Batchelor model}} \]

Comparison
to experimental observations

\[ \eta_r = \left(1 - \frac{\phi}{\phi_c}\right)^\alpha \]

A model applicable to sensible experiments

Instabilities may arise once immerged

    Fluid-particle interaction force
    \[ \mathbf{f}_{fp} = -V_p \nabla p - \gamma \left(\mathbf{v} - \mathbf{u}\right) \] From Newton's second law :
    \[ \frac{\text{d}}{\text{dt}}(m \mathbf{v}) = m \mathbf{g} + \mathbf{f}_{fp} + \mathbf{f}_{pp} \] From semi implicit scheme, a particle velocity predication is made :
    \[ \frac{m}{\Delta t} (\mathbf{v}^* - \mathbf{v}^n) = m \mathbf{g} - V_p \nabla p^{n+1} - \gamma^n \left(\mathbf{v}^* - \mathbf{u}^{n+1}\right) + \mathbf{f}_{pp}^n \] The fluid-particle force can lead to instabilities : \[ \mathbf{f}_{fp}^{n+1} = F(\mathbf{u}^{n+1}, \mathbf{p}^{n+1}, \mathbf{v}^{n}, \mathbf{f}_{pp}^n) \]

How to avoid pressure instability

    Decompose the pressure : \[ \begin{aligned} \nabla p &= \nabla P_{h} + \nabla P_{d} \\ &= -\rho \mathbf{g} + \epsilon \gamma \left(\mathbf{v} - \mathbf{u}\right) \end{aligned} \]
    Add an extra-diffusivity as a stabilization term (PSPG-SUPG)

NSCD with cohesive particles

    Forces can be added into a particle-particle contact to study agglomeration phenomenon.
    Force derivated from Morse's potential : \[U_{morse}(r) = D_e \left[1 - e^{-\beta d \left(\frac{r}{d}-1\right)}\right]^2\]
Constitutive law proposed by A.Yazdani[2017]

Predefined bond for particle chains

    Each chain is pre-generated contacts with a cohesive spring force based on a FENE model : \[ \begin{aligned} F_{s} = \frac{k \Delta \mathbf{x}}{1 - \left(\frac{\Delta\mathbf{x}}{Q}\right)^2} \end{aligned} \]

Small timestep avoid wide reactions

    Monodisperse chains submitted to a fixed-volume simple shear
    An over-simplified model for platelet interaction.

A droplet can dig into a granular media

Granular bed is fluidized by Leidenfrost effect
The droplet digs up to 10 times its radius

New developments towards thermal particulate flows

    Main difficulties :
    • Couple the temperature with the fluid solver
    • Solve a FEM-DEM energy equation
    • A model for vapor creation
    • Track the bubble

A weak coupling by the Boussinesq's approximation

    Navier-Stokes equation : \[ \begin{aligned} &\nabla \cdot \mathbf{u} = 0\\ &\rho \left[\frac{\partial \mathbf{u}}{\partial t} + \nabla \cdot \left(\mathbf{u}\mathbf{u}\right)\right] = -\nabla p + \nabla \cdot (2\eta\mathbf{d}) + \color{red}{\rho (1-\alpha T) \mathbf{g}} \end{aligned} \]
    Energy Equation : \[ c_p \rho \left(\frac{\partial T}{\partial t} + \nabla \cdot \left(\mathbf{u} T\right)\right) = \nabla \cdot (k \nabla T) \]

An evaporation model for the vapor

    Gas mixture composed of two ideal gas mixture, \[ p_g = p_v + p_a \]
    At the interface, from the Clausius-Clapeyron law, the saturated vapor pressure leads to \[ p_v\vert_{\Gamma} = p_g \exp\left[ -\frac{L_{vap}M_1}{R} \left(\frac{1}{T\vert_{\Gamma}} - \frac{1}{T_{sat}}\right) \right] \] This is linked to the energy equation by an interface condition \[ \left[ k \nabla T \cdot \mathbf{n} \right]_{\Gamma} = \dot{m} \left(L_{vap} + (C^p_{f} - C^p_{v})\ (T_{sat} - T\vert_{\Gamma})\right) \]

The local mass flow rate is deduced
from evolution vapor

    The conservation of vapor is given by \[ \rho \frac{\partial Y}{\partial t} + \nabla \cdot \mathbf{u}Y = \nabla \cdot \left(\rho D \nabla Y \right) \] with the interface condition \[ \begin{aligned} &\left[\rho D \nabla Y \cdot \mathbf{n}\right]_{\Gamma} = -\dot{m} \left[Y\right]_{\Gamma}\\ &Y_{\Gamma} = \frac{p_v\vert{\Gamma}M_v}{p_v\vert{\Gamma}M_v + (p_g - p_v)M_a} \end{aligned} \] From the evolution of vapor, the local mass flow rate can be deduced

    The evaporation is tracked by a mesh deformation and adaptation
    The arbitrary Lagrangian Euler representation is used

Energy Fluid-grains coupling

    Averaged Navier-Stokes equation : \[ \begin{aligned} &\color{red}{\nabla \cdot \mathbf{u}^s} + \nabla \cdot \mathbf{u} = 0\\ &\rho \left[\frac{\partial \mathbf{u}}{\partial t} + \nabla \cdot \left(\frac{\mathbf{u}\mathbf{u}}{\color{red}{\epsilon}}\right)\right] = -\color{red}{\epsilon} \nabla p + \nabla \cdot (2\eta^*\color{red}{\epsilon}\mathbf{d}) - \color{red}{\mathbf{f}} + \color{red}{\epsilon} \rho (1-\alpha T) \mathbf{g} \end{aligned} \]
    Energy Equation : \[ c_p \rho \left(\frac{\partial (\color{red}{\epsilon} T)}{\partial t} + \nabla \cdot \left(\mathbf{u} T\right)\right) = \nabla \cdot (k \color{red}{\epsilon} \nabla T) + \color{red}{Q_p} \] with \[ \color{red}{Q_p} = \sum_{i \in \mathcal{P}} S_i h_i (T_i - T_i^s) \]